3.6.22 \(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [522]

Optimal. Leaf size=196 \[ \frac {\sqrt {a} (6 A+5 B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{8 d}+\frac {a B \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \]

[Out]

1/8*(6*A+5*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1
/3*a*B*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(1/2)+1/12*a*(6*A+5*B)*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+
a*sec(d*x+c))^(1/2)+1/8*a*(6*A+5*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3034, 4101, 3888, 3886, 221} \begin {gather*} \frac {a (6 A+5 B) \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {a (6 A+5 B) \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {\sqrt {a} (6 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{8 d}+\frac {a B \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Cos[c + d*x]^(5/2),x]

[Out]

(Sqrt[a]*(6*A + 5*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c +
d*x]])/(8*d) + (a*B*Sin[c + d*x])/(3*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]) + (a*(6*A + 5*B)*Sin[c + d
*x])/(12*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + (a*(6*A + 5*B)*Sin[c + d*x])/(8*d*Cos[c + d*x]^(3/2)
*Sqrt[a + a*Sec[c + d*x]])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3888

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*d*
Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[2*a*d*((n - 1)/(b*(2
*n - 1))), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a
^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 4101

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])
), x] + Dist[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1)), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n
, 0] &&  !LtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\\ &=\frac {a B \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{6} \left ((6 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a B \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{8} \left ((6 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a B \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{16} \left ((6 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a B \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {\left ((6 A+5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}\\ &=\frac {\sqrt {a} (6 A+5 B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{8 d}+\frac {a B \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (6 A+5 B) \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.05, size = 131, normalized size = 0.67 \begin {gather*} \frac {\sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \left (3 \sqrt {2} (6 A+5 B) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3(c+d x)+(18 A+31 B+4 (6 A+5 B) \cos (c+d x)+3 (6 A+5 B) \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d \cos ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Cos[c + d*x]^(5/2),x]

[Out]

(Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(3*Sqrt[2]*(6*A + 5*B)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c +
d*x]^3 + (18*A + 31*B + 4*(6*A + 5*B)*Cos[c + d*x] + 3*(6*A + 5*B)*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(48*d*
Cos[c + d*x]^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(403\) vs. \(2(166)=332\).
time = 12.10, size = 404, normalized size = 2.06

method result size
default \(-\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (18 A \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )+18 A \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )+15 B \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )+15 B \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )+36 A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+30 B \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+24 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+20 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+16 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{48 d \sin \left (d x +c \right )^{2} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )^{\frac {5}{2}}}\) \(404\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/48/d*(-1+cos(d*x+c))*(18*A*2^(1/2)*cos(d*x+c)^3*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x
+c))*2^(1/2))+18*A*2^(1/2)*cos(d*x+c)^3*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2)
)+15*B*2^(1/2)*cos(d*x+c)^3*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))+15*B*2^(1
/2)*cos(d*x+c)^3*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))+36*A*sin(d*x+c)*cos(d
*x+c)^2*(-2/(1+cos(d*x+c)))^(1/2)+30*B*sin(d*x+c)*cos(d*x+c)^2*(-2/(1+cos(d*x+c)))^(1/2)+24*A*(-2/(1+cos(d*x+c
)))^(1/2)*sin(d*x+c)*cos(d*x+c)+20*B*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)+16*B*(-2/(1+cos(d*x+c)))^
(1/2)*sin(d*x+c))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)^2/(-2/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(5/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 3342 vs. \(2 (166) = 332\).
time = 1.05, size = 3342, normalized size = 17.05 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

-1/96*(6*(12*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(7/2*arctan2(sin(d*x + c), cos(d*x + c
))) + 4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(d*x + c), cos(d*x + c))) -
 4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c))) - 12*(
sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 3*(2*(2*
cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*si
n(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x
 + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x
 + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 3*(2*(2*cos(2*d*x + 2*c)
 + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*s
in(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x +
 c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x +
 c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x
+ 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c)
+ 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(
1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2
)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d
*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x +
2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(
d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan
2(sin(d*x + c), cos(d*x + c))) + 2) - 12*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin
(7/2*arctan2(sin(d*x + c), cos(d*x + c))) - 4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2)
)*sin(5/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sq
rt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) + 12*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c
) + sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*A*sqrt(a)/(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4
*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4
*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1) + (60*(sqrt(2)*sin(6*d*x + 6*c) + 3*sqrt(2)*sin(4*d*x + 4*c) + 3
*sqrt(2)*sin(2*d*x + 2*c))*cos(11/2*arctan2(sin(d*x + c), cos(d*x + c))) + 20*(sqrt(2)*sin(6*d*x + 6*c) + 3*sq
rt(2)*sin(4*d*x + 4*c) + 3*sqrt(2)*sin(2*d*x + 2*c))*cos(9/2*arctan2(sin(d*x + c), cos(d*x + c))) + 168*(sqrt(
2)*sin(6*d*x + 6*c) + 3*sqrt(2)*sin(4*d*x + 4*c) + 3*sqrt(2)*sin(2*d*x + 2*c))*cos(7/2*arctan2(sin(d*x + c), c
os(d*x + c))) - 168*(sqrt(2)*sin(6*d*x + 6*c) + 3*sqrt(2)*sin(4*d*x + 4*c) + 3*sqrt(2)*sin(2*d*x + 2*c))*cos(5
/2*arctan2(sin(d*x + c), cos(d*x + c))) - 20*(sqrt(2)*sin(6*d*x + 6*c) + 3*sqrt(2)*sin(4*d*x + 4*c) + 3*sqrt(2
)*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c))) - 60*(sqrt(2)*sin(6*d*x + 6*c) + 3*sqrt(2)*si
n(4*d*x + 4*c) + 3*sqrt(2)*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 15*(2*(3*cos(4*d*x
 + 4*c) + 3*cos(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 6*(3*cos(2*d*x + 2*c) + 1)*cos(4*d*x
 + 4*c) + 9*cos(4*d*x + 4*c)^2 + 9*cos(2*d*x + 2*c)^2 + 6*(sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*
c) + sin(6*d*x + 6*c)^2 + 9*sin(4*d*x + 4*c)^2 + 18*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sin(2*d*x + 2*c)^2 +
 6*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c)
, cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*
x + c), cos(d*x + c))) + 2) + 15*(2*(3*cos(4*d*x + 4*c) + 3*cos(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c) + cos(6*d*x
 + 6*c)^2 + 6*(3*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + 9*cos(4*d*x + 4*c)^2 + 9*cos(2*d*x + 2*c)^2 + 6*(sin
(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 9*sin(4*d*x + 4*c)^2 + 18*sin(4*d*x
+ 4*c)*sin(2*d*x + 2*c) + 9*sin(2*d*x + 2*c)^2 + 6*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), c
os(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), c
os(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 15*(2*(3*cos(4*d*x + 4*c) + 3*co
s(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 6*(3*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + 9*co
s(4*d*x + 4*c)^2 + 9*cos(2*d*x + 2*c)^2 + 6*(si...

________________________________________________________________________________________

Fricas [A]
time = 3.09, size = 439, normalized size = 2.24 \begin {gather*} \left [\frac {4 \, {\left (3 \, {\left (6 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (6 \, A + 5 \, B\right )} \cos \left (d x + c\right ) + 8 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (6 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{4} + {\left (6 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}, \frac {2 \, {\left (3 \, {\left (6 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (6 \, A + 5 \, B\right )} \cos \left (d x + c\right ) + 8 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (6 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{4} + {\left (6 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{48 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

[1/96*(4*(3*(6*A + 5*B)*cos(d*x + c)^2 + 2*(6*A + 5*B)*cos(d*x + c) + 8*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3*((6*A + 5*B)*cos(d*x + c)^4 + (6*A + 5*B)*cos(d*x + c)^3)*sqrt(a)*log
((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*s
in(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^4 + d*cos(d*x + c)
^3), 1/48*(2*(3*(6*A + 5*B)*cos(d*x + c)^2 + 2*(6*A + 5*B)*cos(d*x + c) + 8*B)*sqrt((a*cos(d*x + c) + a)/cos(d
*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3*((6*A + 5*B)*cos(d*x + c)^4 + (6*A + 5*B)*cos(d*x + c)^3)*sqrt(-a
)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2
- a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2)/cos(d*x+c)**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3435 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2))/cos(c + d*x)^(5/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2))/cos(c + d*x)^(5/2), x)

________________________________________________________________________________________